Томат с отредактированным геномом поступил в продажу в Японии

Как сообщает The Japan News, в Японии началась продажа томата с отредактированным геномом, который содержит в пять раз больше гамма-аминомасляной кислоты, чем неотредактированный овощ. Считается, что ГАМК снижает кровяное давление. Томат разработан компанией Sanatech Seed, базирующейся в Токио. Увеличения содержания ГАМК добились с помощью удаления аутоингибиторного домена в геноме, ограничивающего выработку этого вещества. По данным другого источника, NHK, разрешение на продажу овоща было получено в декабре 2020 года, тогда же были подписаны контракты с фермерами, и сейчас томаты как раз созрели. Три килограмма томатов стоят примерно $68.

Томаты с высоким содержанием ГАМК — первый в Японии пищевой продукт с отредактированным геномом, который попадет на стол потребителю. Организмы с отредактированным геномом (genome-edited), в отличие от генно-модифицированных (genetically modified), считаются безопасными, так как в них не вносятся чужеродные гены.

Ранее сообщалось, что в Японии также рассматривается возможность одобрения отредактированного красного леща с увеличенной на 50% мышечной массой.

Добавить в избранное

Вам будет интересно

12.05.2024
511
0

Первый реципиент генетически модифицированной почки свиньи умер почти через два месяца после операции, сообщили в субботу его семья и Массачусетская больница общего профиля. Операцию сделали 16 марта 2024 года. Свиную почку для трансплантации предоставила компания eGenesis.

Ричарду Слейману из Уэймута, штат Массачусетс, было 62 года, и он стал первым живым человеком, которому выполнили такую операцию. (Ранее ее сделали двум людям с умершим мозгом.) Хирурги выражали надежду, что свиная почка прослужит как минимум два года, отмечает Associated Press. В апреле сообщалось о признаках клеточного отторжения в пересаженном органе, которые перед выпиской удалось купировать.

Трансплантологи Массачусетской больницы общего профиля заявили, что глубоко опечалены кончиной Слеймана. Они отметили, что нет никаких указаний на связь смерти с трансплантацией.

В 2022 году скончался первый человек, которому трансплантировали сердце ГМ свиньи. Второй такой пациент умер в 2023 году через шесть недель после операции.

26.04.2024
556
0

Regeneron Pharmaceuticals и Mammoth Biosciences сообщили о коллаборации в исследованиях, разработке и коммерциализации методов CRISPR-редактирования генов in vivo (в живом организме).

Компания Mammoth, среди соучредителей которой лауреатка Нобелевской премии 2020 года Дженнифер Дудна, разрабатывает молекулярно-диагностические тесты на основе CRISPR и новые системы для редактирования. В числе их активов ультракомпактные нуклеазы NanoCas (семейство Cas14) и CasPhi, чей небольшой размер облегчает доставку CRISPR-системы в клетку. Regeneron разрабатывает аденоассоциированные вирусные векторы (AAV), которые доставляют груз в определенные клетки и ткани, используя нацеливание с помощью антител. Ранее Regeneron в коллаборации с Intellia применил CRISPR для нокаута гена транстиретина in vivo при транстиретиновом амилоидозе (доставка в печень); компании продолжают сотрудничество по таргетной доставке.

Regeneron Pharmaceuticals и Mammoth Biosciences будут совместно выбирать мишени и вести исследования, а Regeneron возглавит разработку и коммерциализацию. В рамках сделки Mammoth получит от Regeneron инвестиции в акционерный капитал в размере $95 млн и авансовый платеж в $5 млн.

Mammoth также будет иметь право на получение до $370 млн за каждую мишень в разработке, на промежуточные выплаты по достижении определенных регуляторных и коммерческих этапов и на роялти. Mammoth может принять решение о совместном финансировании и распределении прибыли от программ сотрудничества вместо поэтапных выплат и роялти. Со своей стороны, Regeneron получит доступ к технологиям редактирования генов Mammoth, за исключением определенных мишеней, на пять с половиной лет, с возможностью оплаты доступа еще на два года.

Маленькие нуклеазы огромных фагов — новый инструмент для редактирования геномов

У бактериофагов обнаружили CRISPR-системы всех известных типов

04.03.2024
573
0

Репродуктивно-респираторный синдром свиней — опасное вирусное заболевание, которое приносит индустрии $2,7 млрд убытков ежегодно. Вакцинация не обеспечивает 100%-ную защиту. Однако удаление рецептора CD163 с поверхности клеток полностью предотвращает заражение. Британская компания Genus plc, специализирующаяся на разведении скота с желаемыми чертами, модифицировала четыре линии свиней так, чтобы ген CD163 не экспрессировался. К концу года она планирует получить разрешение FDA на продажу таких свиней с целью употребления в пищу человеком. Также компания надеется получить разрешение в Китае (главный потребитель свинины).

Несмотря на то, что у таких свиней нет чужеродной ДНК, FDA рассматривает изменения, внесенные в ДНК с помощью CRISPR, как «новое экспериментальное лекарственное средство», поэтому новая порода требует соответствующей регистрации. Нужно установить безопасность измененного гена, его наследуемость и стабильность в течение поколений, а также резистентность свиней к вирусу. Это долгий и дорогой процесс, который не все специалисты считают обязательным. Дело осложняет то, что хотя модификация гена CD163, защищающая от вируса, может возникать спонтанно, ее никогда не наблюдали у свиней. Еще одно препятствие на пути внедрения новых свиней на рынок — их принятие потребителем. Ранее созданные генетически модифицированные животные, одобренные FDA (быстрорастущий лосось и гипоаллергенные свиньи GalSafe), не получили широкого распространения.

09.02.2024
743
0

Генетически модифицированные микроорганизмы находят все более широкое применение в промышленности, но с этим связаны и риски — например, при нарушении условий содержания микроорганизм может попасть в окружающую среду. Один из способов предотвратить такие утечки предложили авторы статьи в Nature Communications. Чтобы контролировать выживание пекарских дрожжей, они изменили стабильность нескольких ключевых белков и сделали ее зависимой от эстрадиола.

Ученые получили 775 штаммов Saccharomyces cerevisiae; в одном из генов каждого штамма  был изменен дегрон (участок, регулирующий скорость деградации белка). Модифицированный дегрон стабилизировался эстрадиолом, поэтому каждый из 775 полученных штаммов сохранял экспрессию белка только в присутствии этого соединения. Три гена — SPC110, DIS3 и RRP46 — оказались наиболее подходящими мишенями. Соответствующие штаммы нормально росли в присутствии эстрадиола, но их рост нарушался в его отсутствие. Наиболее значительное сдерживание роста обеспечил штамм с модификацией SPC110 — частота уклонения от такой системы контроля составила менее 5×10-7. Однако некоторым клеткам все же удавалось обойти внесенное учеными ограничение. Анализ «нарушителей» показал, что наиболее частым способом была мутация, вносящая преждевременный стоп-кодон на C-конце белка. Удаление C-концевого домена белка еще сильнее снизило выживаемость модифицированных дрожжей в отсутствие эстрадиола.

Авторы отмечают, что предложенный метод, основанный на лиганд-зависимом изменении стабильности ключевых белков, можно расширить — например, использовать другие малые молекулы в тех случаях, когда применение эстрадиола нежелательно.

28.12.2023
564
0

Синтез хромосом de novo — длительный и затратный процесс, что ограничивает его применение в научных исследованиях и биотехнологии. Коллектив из Южно-Калифорнийского университета предложил альтернативу — создание синтетических хромосом дрожжей из природных фрагментов. Метод получил название  CReATiNG (от Cloning, Reprogramming, and Assembling Tiled Natural Genomic DNA).

Первый этап CReATiNG — клонирование сегментов природных хромосом. На этом шаге к концам сегментов добавляют уникальные адаптерные последовательности, определяющие, как молекулы будут рекомбинировать друг с другом в ходе дальнейшей сборки. Второй этап — совместная трансформация клонированных сегментов в клетки и их сборка путем гомологичной рекомбинации in vivo. Такой подход значительно дешевле и быстрее, чем сборка из синтезированных de novo фрагментов. Например, некоторые синтетические хромосомы, созданные авторами статьи, прошли путь от разработки in silico до тестирования in vivo в течение месяца, а их производство обошлось менее чем в пятьсот долларов.

Ученые показали, что CReATiNG можно использовать для создания синтетических хромосом со сложным дизайном, включающим более десяти сегментов. Кроме того, подход можно комбинировать с синтезом хромосом de novo. Например, хромосомы со свойственной дрожжам архитектурой, но с последовательностями из других видов, могут быть синтезированы de novo, а затем рекомбинированы с хромосомами дрожжей — это упростило бы изучение генетических основ репродуктивной изоляции и различий в признаках между филогенетически далекими организмами. Также с помощью CReATiNG можно собирать единые модули из генов, относящихся к одним и тем же сигнальным путям и клеточным процессам, что важно для их исследования.