Виртуальная крыса предсказывает активность нейронов при движениях лучше, чем анализ самих движений
Изучение контроля моторики животных традиционно опирается на связь между активностью нейронов в соответствующих областях мозга, таких как моторная кора и базальные ганглии, с наблюдаемыми особенностями движений. Однако такая стратегия не учитывает само формирование движений и потому не позволяет установить, как управление моторикой реализуется в нейронных цепях. В качестве альтернативы авторы статьи в Nature предложили рассмотреть мозг и тело как единую систему и создали «виртуальную крысу» — компьютерную симуляцию, в которой нейронная сеть управляет биомеханически реалистичной моделью крысы.
Ученые измерили траектории движения всего тела у свободно перемещающихся крыс, а затем научили «мозг» виртуального животного преобразовывать их в двигательные команды, необходимые для их выполнения — такое преобразование называется обратной динамикой. Для реализации обратной динамической модели исследователи применили глубокое обучение с подкреплением (система получила название MIMIC, от motor imitation and control), и нейронная сеть затем использовалась для управления биомеханической моделью крысы, имитируя движения реальных животных. Это позволило напрямую сравнить нейронную активность свободно двигающихся крыс с активацией моделей обратной динамики, реализующих те же самые действия.
Разработанный подход применили для интерпретации нейронной активности в дорсолатеральном стриатуме и моторной коре крыс — двух иерархически различных структурах, участвующих в контроле моторики млекопитающих. Оказалось, что паттерны работы нейронов при тех или иных движениях лучше предсказывались по активности сети виртуальной крысы, чем по любым характеристикам перемещений реального животного. Авторы заключают, что моделирование виртуальных животных может стать эффективным инструментом для дальнейшего анализа того, как нейронные цепи контролируют моторные функции.