Ребенку впервые пересадили кишечник от умершего донора
О передовой операции сообщает Reuters с отсылкой на Университетскую клинику Ла Пас в Мадриде. Девочке по имени Эмма всего 13 месяцев, и на момент сообщения ее уже выписали из больницы. Ребенок родился со слишком коротким кишечником, и уже через месяц после рождения кишечник перестал работать, а состояние ухудшилось. Кроме кишечника, девочка получила новые печень, желудок, поджелудочную железу и селезенку.
Донорские органы часто сохраняют с помощью системы экстракорпоральной мембранной оксигенации (ЭКМО). Из-за особенностей кишечника его сложно сохранить после смерти донора. Но Испания — мировой лидер трансплантологии. В 2021 году там было выполнено около 5000 операций по пересадке органов. «Мы говорим о глобальной вехе и об абсолютно новаторском вмешательстве», — говорит Беатрис Домингес Хил, глава Национальной организации трансплантологии Испании. «Это дает надежду для детей в такой же ситуации, как Эмма».
Вам будет интересно




Многие биологические ткани характеризуются не только механической прочностью, но и способностью к регенерации. Синтетические гидрогели не могут обладать обоими свойствами — для повышения прочности приходится жертвовать возможностью самовосстановления материала. Однако ученые из Финляндии и Германии нашли способ обойти это ограничение и создали регенерирующий гидрогель.
За основу гидрогеля взяли концентрированный акриламид. Перед полимеризацией в него добавили нанолисты синтетического гекторита — разновидности силикатного глинистого минерала. Будучи встроенными в плотную гелевую структуру, они формируют стопки листов, способные сдвигаться относительно друг друга и формировать макроскопический монодомен при сдвиге.
Таким способом авторы статьи, опубликованной в Nature Materials, добились одновременно прочности гидрогеля и его способности к самовосстановлению. Материал обладает прочностью на растяжение до 4,2 мегапаскалей (Мпа) и модулем жесткости 50 МПа. При этом гидрогель характеризуется практически 100%-ной эффективностью самовосстановления при повреждении. Исследователи утверждают, что подход можно обобщить на другие полимеры и нанокомпоненты, чтобы создавать жесткие регенерирующие гидрогели. Они могут найти применение в таких областях, как конструирование мягких роботов, доставка лекарств, заживление ран или создание искусственной кожи.




Около 80 миллионов человек во всем мире страдают от тремора, который может мешать выполнять даже простые повседневные действия. Команда ученых из Германии предложила бороться с тремором с помощью искусственных мышц, которые будут компенсировать непроизвольные движения.
Основу конструкции составляет пара мягких электрогидравлических приводов, которые крепятся на предплечье пациента. Они настроены часто сжиматься и растягиваться таким образом, чтобы за счет компенсации движений подавить тремор кисти. Для испытаний ученые создали «механического пациента» — роботизированную руку, которая воспроизводила ранее записанные движения руки пациента, в том числе дрожание. Разработанное устройство действительно подавляло клинически значимый тремор в диапазоне от 2 до 8 Гц, генерируя адекватную силу воздействия во всех протестированных случаях.
Ученые отдельно подчеркивают перспективность «механического пациента» в тестировании активных экзоскелетов — для предварительной оценки новой разработки его применять проще и быстрее, чем проводить испытания на реальных пациентах.




Паразитическую муху Ormia ochracea завезли на Гавайи до 1989 года, вероятно, полинезийские поселенцы и европейские грузовые суда. Там у нее не было известных хозяев, однако муха быстро приспособилась откладывать яйца на самцов местных полевых сверчков Teleogryllus oceanicus. Муху привлекают песни сверчков. Под влиянием отбора у сверчков появилась новая песня с другими акустическими свойствами, которая должна меньше привлекать O. ochracea. Однако ученые из США показали, что у мухи просто улучшился слух.
Авторы исследования собрали мух O. ochracea с Гавайев и из Флориды (в качестве контрольной популяции). Они оценивали реакции самок паразитических мух на песни сверчков (типичные и новые). Исследователи обнаружили, что у гавайских мух слуховая система более чувствительна, чем у флоридских, что позволяет им лучше реагировать на новые песни. В полевых условиях авторы показали, что, хотя гавайские паразитические мухи предпочитали более громкие типичные песни сверчков, они могут обнаруживать менее интенсивные новые песни.




Очковый листонос Carollia perspicillata, обитающий в Центральной и Южной Америке, — один из самых популярных видов летучих мышей, содержащихся в зоопарках. Ученые из ДГТУ (Ростов-на Дону) и других научных центров сравнили кишечную микробиоту диких и живущих в неволе C. perspicillata из Панамы и России (Московский зоопарк). Бактериальные таксоны идентифицировали с помощью высокопроизводительного секвенирования 16S рРНК.
Бактерии, связанные со здоровьем животных (Mannheimia, представители семейства Pasteurellaceae, Staphylococcus и Mycoplasma), преобладали у диких летучих мышей, в то время как бактерии человеческого кишечного микробиома, важные для общественного здравоохранения (Bacteroides, Clostridium, Acinetobacter), — у летучих мышей в зоопарке. Различались также функциональные пути метаболизма кишечной микробиоты, что, вероятно, связано с отличиями в рационах животных (в зоопарке они получают больше полисахаридов, в природе — больше белков). На состав микробиоты также может влиять отсутствие периодов анабиоза у листоносов при содержании в неволе, отмечают авторы.
Эти данные показывают, что результаты изучения микробиома летучих мышей в неволе необходимо интерпретировать с осторожностью.
Исследования ученых ДГТУ проводятся в рамках проекта РНФ № 23-14-00316.




Почему даже после плотного обеда в желудке находится место для десерта? Авторы статьи в Science нашли возможный ответ — они установили, что в состоянии сытости избирательно активируется тяга к сладкому, и за это отвечают те же самые нейроны, которые передают сигнал о насыщении.
Несмотря на то, что чувство насыщения снижает общее потребление пищи, при нем зачастую повышается желание употреблять сладкие продукты, например, десерты. Основными регуляторами чувства сытости выступают проопиомеланокортиновые (POMC) нейроны в гипоталамусе, которые продуцируют меланокортины и через них снижают потребление пищи. В аркуатном ядре гипоталамуса ученые обнаружили особую группу таких нейронов, которые посылали проекции в таламус и, в отличие от большинства POMC-нейронов, выделяли β-эндорфин. Этот эндогенный опиоид стимулирует аппетит. Он избирательно ингибирует нейроны таламуса, экспрессирующие µ-опиоидные рецепторы, и тем самым стимулирует потребление сахара при общем чувстве сытости.
«Это осмысленно с эволюционной точки зрения: сахар редко встречается в природе, но быстро дает энергию. Мозг запрограммирован управлять потреблением сахара, когда тот доступен», — рассуждает руководитель исследования доктор Хеннинг Фенселау из Института исследований метаболизма Общества Макса Планка.
Обнаруженные нейроны сильно активировались при потреблении сахара, причем особенно выраженно — у сытых мышей. Ингибирование ß-эндорфинового сигнала, напротив, снижало у сытых мышей тягу к сладкому, причем на голодных мышей этот эффект не распространялся. Данные подтвердились и на людях — в эксперименте на добровольцах ученые обнаружили, что на сахар реагирует та же область человеческого мозга. Обнаруженный механизм может лечь в основу терапии ожирения.