Умер человек с сердцем свиньи

Дэвид Беннетт, 57-летний пациент с неизлечимой болезнью сердца, вошедший в историю как первый человек, которому пересадили генетически модифицированное свиное сердце, скончался 8 марта, сообщает Медицинский центр Университета Мэриленда (UMMC). С октября 2021 года Беннет был подключен к аппарату ЭКМО. Его признали непригодным для обычной пересадки сердца, и 31 декабря FDA США дало экстренное разрешение на операцию в надежде спасти его жизнь. (Подробнее на PCR.NEWS.)

Беннетт перенес операцию 7 января. После операции он начал восстанавливать силы, смотрел Суперкубок со своим физиотерапевтом и часто говорил, что хочет вернуться домой. Несколько дней назад его состояние начало ухудшаться. Точная причина смерти пока не ясна, так как врачи все еще проводят обследование. Беннетт прожил с ксенотрансплантатом сердца два месяца.

«Как и в случае любой первой в мире операции по трансплантации, эта операция позволила сделать ценные выводы, которые, мы надеемся, помогут хирургам-трансплантологам улучшить результаты и обеспечить спасение жизней будущих пациентов», — сказал доктор Бартли Гриффит, который проводил трансплантацию в UMMC.

Добавить в избранное

Вам будет интересно

21.02.2024
805
0

Гидрогели находят широкое применение в биомедицине — от доставки терапевтических агентов до матриц для регенерации тканей. Тем не менее, быстрое и прочное прикрепление гидрогелевых конструкций друг к другу остается нерешенной задачей. Один из способов склеивания предложили авторы статьи в PNAS — они использовали тонкие хитозановые пленки.

Существующие подходы к адгезии гидрогелей основаны на диффузии склеивающих агентов в жидкости и образовании ковалентных связей, и это требует длительного времени. Напротив, «сухая» адгезия основана на быстром поглощении жидкостей на границе гидрогель—гидрогель и работает практически мгновенно. Для создания адгезии между двумя альгинат-полиакриламидными гелями ученые применили сухие пленки хитозана. Эти пленки обеспечивали быстрое (менее чем за секунду) и прочное скрепление гидрогелей за счет нековалентных взаимодействий.

Исследователи также продемонстрировали несколько возможных применений такого склеивания гидрогелей. Они показали, что гидрогели можно закреплять на поверхностях при помощи хитозана — например, использовать их в качестве самоклеящихся повязок на поврежденный палец. Также гидрогели, поверхность которых покрыта тонкими хитозановыми пленками, авторы обернули вокруг разных органов и тканей, не приклеивая гидрогель к самой ткани. Таким способом они закрепили гидрогели на кишечнике, сухожилиях и периферических нервах. Как пояснил доктор Бенджамин Фридман, первый автор статьи, это может пригодиться для того, чтобы «изолировать ткани друг от друга во время операций, поскольку в противном случае могут образовываться фиброзные спайки».
09.02.2024
663
0

Генетически модифицированные микроорганизмы находят все более широкое применение в промышленности, но с этим связаны и риски — например, при нарушении условий содержания микроорганизм может попасть в окружающую среду. Один из способов предотвратить такие утечки предложили авторы статьи в Nature Communications. Чтобы контролировать выживание пекарских дрожжей, они изменили стабильность нескольких ключевых белков и сделали ее зависимой от эстрадиола.

Ученые получили 775 штаммов Saccharomyces cerevisiae; в одном из генов каждого штамма  был изменен дегрон (участок, регулирующий скорость деградации белка). Модифицированный дегрон стабилизировался эстрадиолом, поэтому каждый из 775 полученных штаммов сохранял экспрессию белка только в присутствии этого соединения. Три гена — SPC110, DIS3 и RRP46 — оказались наиболее подходящими мишенями. Соответствующие штаммы нормально росли в присутствии эстрадиола, но их рост нарушался в его отсутствие. Наиболее значительное сдерживание роста обеспечил штамм с модификацией SPC110 — частота уклонения от такой системы контроля составила менее 5×10-7. Однако некоторым клеткам все же удавалось обойти внесенное учеными ограничение. Анализ «нарушителей» показал, что наиболее частым способом была мутация, вносящая преждевременный стоп-кодон на C-конце белка. Удаление C-концевого домена белка еще сильнее снизило выживаемость модифицированных дрожжей в отсутствие эстрадиола.

Авторы отмечают, что предложенный метод, основанный на лиганд-зависимом изменении стабильности ключевых белков, можно расширить — например, использовать другие малые молекулы в тех случаях, когда применение эстрадиола нежелательно.

11.01.2024
445
0

Желудочковые аритмии — причина внезапной сердечной смерти, и существует острая потребность в методах их лечения. Ученые из США разработали инъецируемый гидрогелевый электрод, который позволяет гораздо точнее стимулировать целевой участок, чем используемые в настоящее время способы кардиостимуляции. Такой электрод должен обеспечивать стимуляцию сердца из сердечных вен, куда он будет доставляться при помощи катетера.

Для создания электрода исследователи выбрали материал, похожий по жесткости на сердечную мышцу, — диакриламид полиэфир-полиуретана (PEUDAm). Проводимость полимера обеспечили при помощи реакции с акрилоилхлоридом, и в полученном гидрогеле она более чем в два раза превышала показатели целевого миокарда. Это позволяет создать проводящую магистраль, подобную волокнам Пуркинье.

Разработанный гидрогелевый электрод авторы работы испытали на свиньях. Чтобы смоделировать повреждения сердца, они проводили абляцию на эпикарде вблизи межжелудочковых вен (глубину образующегося рубца подтверждали при посмертном вскрытии). Подтвердив нарушение проводимости в сердце с помощью электрокардиографии (ЭКГ), ученые вводили в межжелудочковые вены гидрогелевый электрод. Электроанатомическое картирование показало, что стимуляция при помощи электрода увеличила площадь активации ткани, а фронт волны активации достигал средней части миокарда и эндокарда гораздо раньше, чем при точечной электростимуляции.

28.12.2023
497
0

Синтез хромосом de novo — длительный и затратный процесс, что ограничивает его применение в научных исследованиях и биотехнологии. Коллектив из Южно-Калифорнийского университета предложил альтернативу — создание синтетических хромосом дрожжей из природных фрагментов. Метод получил название  CReATiNG (от Cloning, Reprogramming, and Assembling Tiled Natural Genomic DNA).

Первый этап CReATiNG — клонирование сегментов природных хромосом. На этом шаге к концам сегментов добавляют уникальные адаптерные последовательности, определяющие, как молекулы будут рекомбинировать друг с другом в ходе дальнейшей сборки. Второй этап — совместная трансформация клонированных сегментов в клетки и их сборка путем гомологичной рекомбинации in vivo. Такой подход значительно дешевле и быстрее, чем сборка из синтезированных de novo фрагментов. Например, некоторые синтетические хромосомы, созданные авторами статьи, прошли путь от разработки in silico до тестирования in vivo в течение месяца, а их производство обошлось менее чем в пятьсот долларов.

Ученые показали, что CReATiNG можно использовать для создания синтетических хромосом со сложным дизайном, включающим более десяти сегментов. Кроме того, подход можно комбинировать с синтезом хромосом de novo. Например, хромосомы со свойственной дрожжам архитектурой, но с последовательностями из других видов, могут быть синтезированы de novo, а затем рекомбинированы с хромосомами дрожжей — это упростило бы изучение генетических основ репродуктивной изоляции и различий в признаках между филогенетически далекими организмами. Также с помощью CReATiNG можно собирать единые модули из генов, относящихся к одним и тем же сигнальным путям и клеточным процессам, что важно для их исследования.

04.10.2023
725
0

Экспрессия генов с плазмидной ДНК после трансфекции, как правило, носит временный характер. Механизм, который ее прекращает, пока не был точно установлен, однако недавно ученые описали новый компартмент в клетках млекопитающих, который содержит внехромосомную ДНК. Они показали, что ДНК, попадающая в клетки, быстро окружается двойной мембраной в цитоплазме — полученный контейнер хранится в клетке несколько циклов деления.

Эксклюсома — так авторы назвали новый компартмент — содержит в оболочке белки эндоплазматического ретикулума (ЭПР), а также белки внутренней ядерной мембраны Lap2β и эмерин. Исследователи предположили, что упаковка внехромосомной ДНК в эксклюсомы происходит при участии ЭПР (об этом говорит наличие белков ЭПР в ее мембране и контакты эксклюсом с ЭПР), однако сама оболочка сильно напоминает ядерную. Отличие состоит в отсутствии рецептора ламина B и ядерного порового комплекса. Однако, несмотря на отсутствие ядерных пор, обмен между эксклюсомой и цитоплазмой остается возможен — это обеспечивается фенестрациями мембраны.

Важную роль в формировании эксклюсомы играет белок эмерин. Ученые подтвердили это при помощи оверэкспрессии LEM-домена, который участвует в связывании эмерина с BAF (ДНК-связывающий белок). Такая оверэкспрессия препятствовала связыванию полноразмерного эмерина с его мишенью; оказалось, что это ограничило образование эксклюсом. Каким именно образом клетки различают внехромосомную ДНК и хромосомы, исследователи пока не выяснили. Сама способность клеток к упаковке плазмид в эксклюсомы (последние также могут содержать кольцевую ДНК, происходящую из теломер) говорит о существовании сложных механизмов, защищающих клетки млекопитающих от экзогенной ДНК. Авторы работы рассчитывают, что дальнейшие исследования раскроют детали работы этого механизма, его эволюционный путь и то, как он координируется с теми системами иммунитета, которые возникли благодаря многоклеточности.