Возрастная демиелинизация способствует прогрессии болезни Альцгеймера

Болезнь Альцгеймера — одно из самых распространенных в мире нейродегенеративных заболеваний, и ее риск повышается с возрастом. Также с возрастом деградируют миелиновые оболочки нервных волокон. Недавнее исследование показало, что демиелинизация способствует развитию ассоциированных с болезнью Альцгеймера нарушений.

Моделируя болезнь Альцгеймера на мышах, ученые показали, что деградация миелина ускоряет накопление амилоидных бляшек в мозге. Демиелинизация вызывала клеточный стресс нейронов и стимулировала выработку ими β-амилоида. Кроме того, дефектный миелин становился мишенью для микроглии, что мешало ей элиминировать уже сформировавшиеся амилоидные бляшки.

Это первое явное подтверждение связи между возрастной демиелинизацией и риском развития болезни Альцгеймера. Исследователи полагают, что замедление возрастного разрушения миелина может открыть новые пути предотвращения болезни или замедления ее прогрессирования в будущем.

Добавить в избранное

Вам будет интересно

15.04.2024
310
0

В новой работе ученые показали, что озон нарушает двойные связи в половых феромонах дрозофил, из-за чего стираются межвидовые границы. При небольшом повышении уровня озона самцы дрозофил утрачивают предпочтение к самкам своего вида, в результате чего чаще рождаются гибриды, в том числе стерильные. Рост уровня озона все чаще регистрируется в жаркие дни, и авторы исследования считают, что этим можно объяснить снижение числа насекомых. Подробнее

Секвенировав более сотни геномов многоклеточных водорослей, ученые показали, что многоклеточность развилась в трех линиях водорослей независимо. Многоклеточные водоросли отличаются от одноклеточных наличием генов клеточной адгезии, клеточной дифференциации, межклеточных коммуникаций и межклеточного транспорта. Эти гены были обнаружены у вирусов, заражающих водоросли. Ученые предположили, что критическим фактором обретения многоклеточности был горизонтальный перенос генов от вирусов к водорослям. Подробнее.

До сих пор не совсем понятно, как плохая диета и ожирение связаны с повышенным риском рака. Ученые показали, что клетки людей с мутациями в гене BRCA2 особо чувствительны к метилглиоксалю — веществу, которое образуется в организме при переработке глюкозы. Оно может нарушать целостность ДНК и индуцировать рак. Предположительно, у людей без мутации в BRCA2, но с повышенным из-за диабета уровнем метилглиоксаля тоже могут образовываться такие нарушения — признаки повышенного риска развития рака. Подробнее.

Дороги, заборы, города и другие сооружения препятствуют миграции антилоп гну. Ученые показали, что это плохо сказывается на их генетическом здоровье. Снижается генетическое разнообразие, популяции становятся более генетически изолированными, повышается уровень инбридинга. Все это приводит к худшей выживаемости, особенно в условиях изменяющегося климата. Подробнее.

Бонобо долгое время считались более миролюбивыми, чем шимпанзе. Однако долговременное наблюдение за всеми контактами 12 самцов бонобо и 14 самцов шимпанзе в природе показало, что это не совсем так. Оказалось, что самцы бонобо чаще, чем шимпанзе, проявляли агрессию по отношению к другим самцам (в 2,8 раза). В то же время самцы бонобо реже атаковали самок, но самки чаще атаковали самцов. Ученые объясняют это тем фактором, что самки бонобо чаще стоят на более высокой социальной ступеньке, чем самцы. Подробнее.

16.01.2024
621
0

Аутофагия — переваривание клеткой собственных ненужных компонентов — усиливается в раковых клетках по сравнению со здоровыми. Есть предположение, что подавление аутофагии может стать основой для разработки противораковых препаратов, однако результаты почти 20 клинических испытаний ингибиторов аутофагии оказались неубедительными. В то же время был установлен интригующий факт: ингибиторы аутофагии лучше действовали у курильщиков.

Понятно, что курение невозможно рекомендовать в качестве противоракового средства. С другой стороны, в крови курильщика повышается уровень угарного газа СО, связанного с гемоглобином, а СО известен как индуктор аутофагии. Авторы статьи, опубликованной в декабре в Advanced Science, давали мышам с опухолями поджелудочной железы и простаты питьевую пену с угарным газом, содержащую ингибитор аутофагии гидроксихлорохин. Рост и прогрессирование опухолей по сравнению с контролем значительно замедлялись. Сочетание монооксида углерода с ингибиторами аутофагии также подавляло рост раковых клеток простаты, легких и поджелудочной железы человека в культуре.

28.12.2023
536
0

Синтез хромосом de novo — длительный и затратный процесс, что ограничивает его применение в научных исследованиях и биотехнологии. Коллектив из Южно-Калифорнийского университета предложил альтернативу — создание синтетических хромосом дрожжей из природных фрагментов. Метод получил название  CReATiNG (от Cloning, Reprogramming, and Assembling Tiled Natural Genomic DNA).

Первый этап CReATiNG — клонирование сегментов природных хромосом. На этом шаге к концам сегментов добавляют уникальные адаптерные последовательности, определяющие, как молекулы будут рекомбинировать друг с другом в ходе дальнейшей сборки. Второй этап — совместная трансформация клонированных сегментов в клетки и их сборка путем гомологичной рекомбинации in vivo. Такой подход значительно дешевле и быстрее, чем сборка из синтезированных de novo фрагментов. Например, некоторые синтетические хромосомы, созданные авторами статьи, прошли путь от разработки in silico до тестирования in vivo в течение месяца, а их производство обошлось менее чем в пятьсот долларов.

Ученые показали, что CReATiNG можно использовать для создания синтетических хромосом со сложным дизайном, включающим более десяти сегментов. Кроме того, подход можно комбинировать с синтезом хромосом de novo. Например, хромосомы со свойственной дрожжам архитектурой, но с последовательностями из других видов, могут быть синтезированы de novo, а затем рекомбинированы с хромосомами дрожжей — это упростило бы изучение генетических основ репродуктивной изоляции и различий в признаках между филогенетически далекими организмами. Также с помощью CReATiNG можно собирать единые модули из генов, относящихся к одним и тем же сигнальным путям и клеточным процессам, что важно для их исследования.

25.10.2023
549
0

Во время упражнений на мышцы воздействуют химические сигналы от окружающих клеток и механические силы от взаимодействия с другими тканями. Остается открытым вопрос, что конкретно позволяет мышцам расти — химические сигналы, механические силы или комбинация этих факторов. Исследователи из Массачусетского технологического института создали мат для «упражнения» клеток мышц, который поможет изучить эти факторы по отдельности.

Маты были выполнены из гидрогеля. С помощью магнитных полос и постоянных магнитов, движущихся под матом, гидрогель оказывал на клетки мышц регулярное и повторяющееся механическое воздействие. Каждый мат был размером с монету. Клетки выращивали на поверхности гидрогеля, сначала они имели круглую форму, со временем формировали волокна. «Упражнения» длились 30 минут в день в течение десяти дней. Контрольные клетки не стимулировали.

В результате механического воздействия клетки вырастали более длинными. Более того, волокна выравнивались в одном направлении, тогда как контрольные волокна росли как попало. В ответ на стимуляцию волокна сокращались, причем одновременно и в одном направлении. Авторы планируют повторить опыты с другими типами клеток.

04.10.2023
770
0

Экспрессия генов с плазмидной ДНК после трансфекции, как правило, носит временный характер. Механизм, который ее прекращает, пока не был точно установлен, однако недавно ученые описали новый компартмент в клетках млекопитающих, который содержит внехромосомную ДНК. Они показали, что ДНК, попадающая в клетки, быстро окружается двойной мембраной в цитоплазме — полученный контейнер хранится в клетке несколько циклов деления.

Эксклюсома — так авторы назвали новый компартмент — содержит в оболочке белки эндоплазматического ретикулума (ЭПР), а также белки внутренней ядерной мембраны Lap2β и эмерин. Исследователи предположили, что упаковка внехромосомной ДНК в эксклюсомы происходит при участии ЭПР (об этом говорит наличие белков ЭПР в ее мембране и контакты эксклюсом с ЭПР), однако сама оболочка сильно напоминает ядерную. Отличие состоит в отсутствии рецептора ламина B и ядерного порового комплекса. Однако, несмотря на отсутствие ядерных пор, обмен между эксклюсомой и цитоплазмой остается возможен — это обеспечивается фенестрациями мембраны.

Важную роль в формировании эксклюсомы играет белок эмерин. Ученые подтвердили это при помощи оверэкспрессии LEM-домена, который участвует в связывании эмерина с BAF (ДНК-связывающий белок). Такая оверэкспрессия препятствовала связыванию полноразмерного эмерина с его мишенью; оказалось, что это ограничило образование эксклюсом. Каким именно образом клетки различают внехромосомную ДНК и хромосомы, исследователи пока не выяснили. Сама способность клеток к упаковке плазмид в эксклюсомы (последние также могут содержать кольцевую ДНК, происходящую из теломер) говорит о существовании сложных механизмов, защищающих клетки млекопитающих от экзогенной ДНК. Авторы работы рассчитывают, что дальнейшие исследования раскроют детали работы этого механизма, его эволюционный путь и то, как он координируется с теми системами иммунитета, которые возникли благодаря многоклеточности.