Исследован нейротоксин из яда паука, купирующий острую и хроническую боль

Ученые из ИБХ им. М.М. Шемякина и Ю.А. Овчинникова РАН, МФТИ и других научных центров исследовали нейротоксин яда бразильского странствующего паука Phoneutria nigriventer. Яд P. nigriventer содержит по меньшей мере пять фракций (PhTx1 — PhTx5), включающих нейротоксические пептиды. Укус паука вызывает боль, головокружение, озноб и лихорадку, повышает артериальное давление и частоту пульса; задокументированы летальные исходы. Кроме того, пострадавшие сообщали о сильной продолжительной эрекции, и некоторые компоненты яда рассматриваются как перспективные препараты от эректильной дисфункции.

Другие компоненты ослабляют болевые сигналы. Так, нейротоксин Phα1β, или PnTx3–6 (шестой пептид из третьей фракции яда), в экспериментах на животных уменьшал как острую, так и хроническую боль. Авторы работы создали эффективную систему бактериальной экспрессии Phα1β. Он воздействует в том числе на катионный канал TRPA1, вовлеченный в переход от острой боли к хронической, восприятие низких температур, химических раздражителей и медиаторов воспаления.

«При исследовании действия токсина Phα1β на TRPA1 мы обнаружили, что токсин не ингибирует канал, а напротив, активирует его, усиливая ионные токи. Очевидно, что усиление ионных токов не сочетается с блокадой поры. На первый взгляд активация канала TRPA1 не соответствует обезболивающему эффекту, наблюдаемому в опытах на животных. Мы предполагаем, что задействован более сложный механизм. Вероятно, усиленная активация каналов TRPA1 в присутствии токсина Phα1β приводит к уменьшению активности нейронов, что, в свою очередь, уменьшает ответ на внешний стимул, вызывающий болевые ощущения, и приводит к снижению воспалительных реакций», — говорит Захар Шенкарёв, профессор кафедры физико-химической биологии и биотехнологии МФТИ, заведующий лабораторией структурной биологии ионных каналов ИБХ РАН (цитата по пресс-релизу МФТИ).

Добавить в избранное

Вам будет интересно

17.06.2025
472
0

Владимир Алексеевич Гвоздев (01.05.1935 — 13.06.2025) в 1957 году начал работать в Институте биофизики АН СССР под руководством Р.Б. Хесина. В 1959 году лаборатория Хесина вошла в состав Радиобиологического отдела, созданного на базе Института атомной по инициативе И.В. Курчатова, И.Е. Тамма и А.П. Александрова. В.А. Гвоздев в 1972 году стал заведующим лаборатории биохимической генетики животных. В 1977 году Радиобиологический отдел был преобразован в Институт молекулярной генетики АН СССР.

В 1985 году В.А. Гвоздев также занял должность профессора кафедры молекулярной биологии биологического факультета МГУ им. М. В. Ломоносова. По учебнику В.И. Агола, А.А. Богданова и В.А. Гвоздева «Молекулярная биология. Структура и биосинтез нуклеиновых кислот» под редакцией А.С. Спирина занималось множество студентов профильных специальностей.

Среди научных интересов В.А. Гвоздева были регуляция экспрессии генов у эукариот, РНК-интерференция, мобильные элементы. Вместе с коллегами он впервые описал короткую РНК, вызывающую деградацию мРНК и позднее получившую название piРНК.

Интервью с Владимиром Алексеевичем Гвоздевым на PCR.NEWS: «Главное для ученого — любовь к науке и настойчивость»

28.12.2024
1202
0

Линкерный гистон фиксирует нить ДНК на нуклеосоме. Считалось, что его роль ограничивается только поддержанием этой структуры, однако авторы статьи в The Plant Cell обнаружили, что это не так — по крайней мере, в растительных клетках.

Ученые обнаружили в клетках арабидопсиса вариант линкерного гистона MdH1.1, который функционирует как транскрипционный фактор. Вместе с геном малатного транспортера и еще несколькими факторами транскрипции он формирует в клетках растения петлю обратной связи, которая контролирует уровни малата в зависимости от концентрации сорбитола в клетке. Подавление экспрессии MdH1.1 с помощью антисмысловых нуклеотидов подавляло накопление малата, а оверэкспрессия, наоборот, увеличивала его содержание. Механизм авторы подробнее изучили на яблоне (Malus domestica).

Таким образом, линкерный гистон оказался не только архитектурным белком. «В прошлом считалось, что линкерные гистоны играют только косвенную роль в регуляции экспрессии генов. Это первый случай — у любых видов — демонстрирующий, что линкерные гистоны напрямую регулируют экспрессию генов», — прокомментировал профессор Корнелльского университета Лайлян Чэн, старший автор работы.

24.12.2024
855
0

При борьбе с раком усилия ученых и врачей в основном направлены на уничтожение опухолевых клеток. Но такой подход ассоциирован с развитием резистентности и побочными реакциями со стороны здоровых клеток. Теоретически можно пойти другим путем — сделать опухолевые клетки нормальными, что прекратит их распространение. При опухолеобразовании клетка идет по пути дедифференцировки, чтобы обратить этот процесс вспять, нужно снова ее дифференцировать. Но в этих процессах участвует множество генов, как узнать, на какие нужно воздействовать?

Чтобы прояснить этот вопрос, ученые из Южной Кореи создали «цифровой двойник» генной сети, связанной с дифференцировкой. Они применили новый подход к клеткам рака кишечника и идентифицировали главные молекулярные переключатели — MYB, HDAC2 и FOXA2. Подавив их в раковых клетках, можно восстановить у них фенотип, близкий к нормальному.

05.11.2024
696
0

Агрегаты α-синуклеина накапливаются в мозге при многих нейродегенеративных заболеваниях. Анализ их структуры с помощью криоэлектронной микроскопии выявил электронно-плотную небелковую сердцевину протофиламентов. Авторы статьи в PLoS Biology смоделировали молекулярную динамику формирования фибрилл α-синуклеина в присутствии полифосфата и пришли к выводу, что именно полифосфат может быть неизвестным электронно-плотным веществом в середине филаментов.

Исследователи опирались на предыдущие работы, в которых было показано, что полифосфат — консервативный полианион — ускоряет формирование α-синуклеиновых фибрилл. Эксперименты по докингу показали, что полифосфат связывается с богатым лизином участком белка и тем самым нейтрализует отталкивание между положительно заряженными остатками лизина. Из-за этого изменяется конформация и стабильность филамента, что, в свою очередь, стимулирует образование фибрилл.