Наночастицы из РНК хорошо проникают в опухоль за счет эластичности
Ученые из Университета штата Огайо показали, что наночастицы РНК, используемые для доставки противоопухолевых препаратов, обладают высокой эластичностью. Резиноподобные свойства РНК-структур исследовали с помощью оптического пинцета и технологий визуализации in vivo.
Этот результат объясняет, почему РНК-носители эффективно воздействуют на опухоли и в то же время демонстрируют меньшую токсичность в исследованиях на животных. Эластичность позволяет РНК-наночастицам проскальзывать через плохо сформированные стенки кровеносных сосудов опухоли и проникать в ее клеточную массу. Благодаря той же эластичности они легче проходят сквозь почечные фильтры и выводятся с мочой через полчаса после системной инъекции, относительно быстро удаляя из организма потенциально токсичный препарат.
Вам будет интересно




Исследователи из Университета Осаки разработали технологию, упрощающую разделение нитей ДНК для нанопорового секвенирования. Их изобретение представляет собой платиновую наноспираль, окружающую нанопору в мембране из нитрида кремния (SiNХ). Когда двунитевая ДНК достигает нанопоры, на нагреватель подается напряжение, и слабый нагрев бережно расплавляет ДНК. Эта концепция может быть полезной для секвенирования в твердотельных порах.
«Ключевое преимущество нового метода заключается в том, что нам не нужно нагревать весь образец, а только очень небольшую его часть, — объясняет первый автор Макусу Цуцуи. — Это означает, что для процесса требуется всего несколько милливатт мощности, повреждение ДНК сводится к минимуму, и мы можем считывать информацию с ДНК более точно».
Исследователи протестировали свой метод на ДНК фага лямбда длиной почти 50 т.п.н. и на более короткой кольцевой плазмиде pBR322. Новый подход позволял не только разделять цепочки ДНК, но и контролировать этот процесс, а также оценивать воздействие на движение ДНК электрических сил, сопротивления вязкой среды и температуры.
«Наше устройство должно быть простым в изготовлении, и мы надеемся, что оно станет базовой технологией для быстрого и точного секвенирования следующего поколения», — говорит руководитель работы Томодзи Каваи и добавляет, что оно хорошо подходит для использования в портативных диагностических приборах.




Спорная статья была опубликована в 2010 году. Фелиса Волф-Саймон из Геологической службы США, работая по гранту NASA, вместе с коллегами выделила из образцов калифорнийского озера Моно, вода которого содержит высокие концентрации мышьяка, бактерию, получившую наименование GFAJ-1. Анализ гена рибосомной 16S РНК показал, что она принадлежит к роду Halomonas, однако авторы статьи в Science сообщали, что в ее ДНК вместо фосфатов якобы содержатся арсенаты AsO43–. Этот сенсационный результат сразу же был подвергнут жесткой критике. В частности, канадский микробиолог Розмэри Редфилд исследовала культуру GFAJ-1 и убедительно доказала, что мышьяка в ДНК бактерии нет.
Тем не менее статью отозвали только сейчас. Главный редактор Science Холден Торп объясняет, что в те годы журнал отзывал в основном статьи, нарушающие этические нормы, однако сейчас могут быть отозваны и статьи, основные выводы которых не подтверждаются экспериментами. Это формальное действие особенно важно в связи с ростом популярности инструментов на основе ИИ.
Авторы статьи заявили, что считают отзыв необоснованным: «Хотя наша работа могла быть написана и обсуждена более тщательно, мы считаем верными представленные данные».
В феврале 2025 года The New York Times опубликовала статью о Фелисе Волф-Саймон, карьера которой сильно пострадала после истории с мышьяковой ДНК: сейчас она получила краткосрочное финансирование для проведения новых исследований. После этого полемика вокруг статьи 2010 года возобновилась.




Владимир Алексеевич Гвоздев (01.05.1935 — 13.06.2025) в 1957 году начал работать в Институте биофизики АН СССР под руководством Р.Б. Хесина. В 1959 году лаборатория Хесина вошла в состав Радиобиологического отдела, созданного на базе Института атомной по инициативе И.В. Курчатова, И.Е. Тамма и А.П. Александрова. В.А. Гвоздев в 1972 году стал заведующим лаборатории биохимической генетики животных. В 1977 году Радиобиологический отдел был преобразован в Институт молекулярной генетики АН СССР.
В 1985 году В.А. Гвоздев также занял должность профессора кафедры молекулярной биологии биологического факультета МГУ им. М. В. Ломоносова. По учебнику В.И. Агола, А.А. Богданова и В.А. Гвоздева «Молекулярная биология. Структура и биосинтез нуклеиновых кислот» под редакцией А.С. Спирина занималось множество студентов профильных специальностей.
Среди научных интересов В.А. Гвоздева были регуляция экспрессии генов у эукариот, РНК-интерференция, мобильные элементы. Вместе с коллегами он впервые описал короткую РНК, вызывающую деградацию мРНК и позднее получившую название piРНК.
Интервью с Владимиром Алексеевичем Гвоздевым на PCR.NEWS: «Главное для ученого — любовь к науке и настойчивость»




Линкерный гистон фиксирует нить ДНК на нуклеосоме. Считалось, что его роль ограничивается только поддержанием этой структуры, однако авторы статьи в The Plant Cell обнаружили, что это не так — по крайней мере, в растительных клетках.
Ученые обнаружили в клетках арабидопсиса вариант линкерного гистона MdH1.1, который функционирует как транскрипционный фактор. Вместе с геном малатного транспортера и еще несколькими факторами транскрипции он формирует в клетках растения петлю обратной связи, которая контролирует уровни малата в зависимости от концентрации сорбитола в клетке. Подавление экспрессии MdH1.1 с помощью антисмысловых нуклеотидов подавляло накопление малата, а оверэкспрессия, наоборот, увеличивала его содержание. Механизм авторы подробнее изучили на яблоне (Malus domestica).
Таким образом, линкерный гистон оказался не только архитектурным белком. «В прошлом считалось, что линкерные гистоны играют только косвенную роль в регуляции экспрессии генов. Это первый случай — у любых видов — демонстрирующий, что линкерные гистоны напрямую регулируют экспрессию генов», — прокомментировал профессор Корнелльского университета Лайлян Чэн, старший автор работы.




При борьбе с раком усилия ученых и врачей в основном направлены на уничтожение опухолевых клеток. Но такой подход ассоциирован с развитием резистентности и побочными реакциями со стороны здоровых клеток. Теоретически можно пойти другим путем — сделать опухолевые клетки нормальными, что прекратит их распространение. При опухолеобразовании клетка идет по пути дедифференцировки, чтобы обратить этот процесс вспять, нужно снова ее дифференцировать. Но в этих процессах участвует множество генов, как узнать, на какие нужно воздействовать?
Чтобы прояснить этот вопрос, ученые из Южной Кореи создали «цифровой двойник» генной сети, связанной с дифференцировкой. Они применили новый подход к клеткам рака кишечника и идентифицировали главные молекулярные переключатели — MYB, HDAC2 и FOXA2. Подавив их в раковых клетках, можно восстановить у них фенотип, близкий к нормальному.